Event by Event fluctuations and the QGP

- Introduction and general discussion
- What can be addressed with E-by-E fluctuations
- Fluctuations of particle ratios
 - Charge fluctuations!
 - Fluctuations of conserved quantities
- Outlook

The QCD Phase-Diagram

Event-by-event fluctuations

The old idea: Two distinct event classes

After the first experiments (NA49): GAUSSIANS, GAUSSIANS....

Physics is in the width of the Gaussian:

Event-by-Event

- First possibilities with NA49 and STAR
- first data from NA49
 ⇒ Gaussians, with almost (±2%)
 statistical width!
- Theory is just now developing

NA49 Pb+Pb Event-by-Event Fluctuations

E-by-E activities

- Temperature fluctuations (Stodolsky (95), Shuryak (98))
- "Phi"-messure (Gazdzicki, Mrowczynski (92))
- Quantum statistics (Mrowczynski (98))
- Two-particle correlations (Bialas, VK(99), Belkacem et al (99))
- Particle Ratios (Baym, Heiselberg (99), Jeon, VK (99,00))
- Resonance gas (Rajagopal, Shuryak, Stephanov (99), Jeon, VK (99))
- Phase transitions, bubble formation (Baym, Heiselberg (99),
 Rajagopal, Shuryak, Stephanov (99), Heiselberg, Jackson (00))
- charge fluctuations (Asakawa, Heinz Mueller (00), Jeon, VK (00), Dumitru, Pisarski (00), Stephanov, Shuryak (00))
- balance functions (Bass, Danielewicz, Pratt (00))
- Baryon number fluctuations(Asakawa, Heinz, Mueller(00), Gavin(00))
- Review article: Heiselberg, nucl-th/000304
-

Gaussians it is!

The physics is in the width!

For <u>Gaussian</u> shape, E-by-E measures 2-particle-correlations (A. Bialas, VK, PLB 456 (99) 1)

⇒ Two arm spectrometer is sufficient

requires event-by-event

two-arm spectrometer is enough

Fluctuations (Widths)

measure generalized Susceptibilities

$$\chi_{a,b} = \frac{dF}{da \ db}$$

Examples:

- Heat capacity \Leftrightarrow T (or p_t) fluctuations
- Baryon number susceptibility
 ⇒ baryon number fluctuations
- charge susceptibility⇔ charge fluctuations

These susceptibilities can be calculated by Lattice QCD

Volume fluctuations

Even for the tightest trigger conditions, the volume created in and HI-collision fluctuates!

Typical observable:

$$\stackrel{\wedge}{O} = \rho V$$

Thus the fluctuations of O are "contaminated" by volume fluctuations

$$\delta \hat{O} = (\delta \rho) V + \rho \delta V$$

The physics is in $(\delta \rho)$!!!!

⇒ Study intensive (volume independent) quantities

- Particle Ratios

 this talk
- mean transverse momentum

• ...

Fluctuations of Particle Ratios

$$R = \frac{N_1}{N_2}$$

Correlations!!!

$$\begin{split} \frac{\langle (\delta R)^2 \rangle}{\langle R \rangle^2} &= \langle \left(\frac{\delta N_1}{\langle N_1 \rangle} - \frac{\delta N_2}{\langle N_2 \rangle} \right)^2 \rangle \\ &= \left(\frac{\langle (\delta N_1)^2 \rangle}{\langle N_1 \rangle^2} + \frac{\langle (\delta N_2)^2 \rangle}{\langle N_2 \rangle^2} - 2 \frac{\langle \delta N_1 \, \delta N_2 \rangle}{\langle N_1 \rangle \, \langle N_2 \rangle} \right) \\ &= \left(\frac{\omega_1}{\langle N_1 \rangle} + \frac{\omega_2}{\langle N_2 \rangle} - 2 \frac{\langle \delta N_1 \, \delta N_2 \rangle}{\langle N_1 \rangle \, \langle N_2 \rangle} \right) \end{split}$$

$$<(\delta N)^2> = \omega N$$

For poisson statistics (ideal gas): $\omega = 1$

Bose statistics:

 $\omega > 1$ small corrections **Fermions**

NO Volume Fluctuations !!!

$$\frac{\delta N_1}{\langle N_1 \rangle} - \frac{\delta N_2}{\langle N_2 \rangle} = \frac{\delta \rho_1 V + \rho_1 \delta V}{\rho_1 V} - \frac{\delta \rho_2 V + \rho_2 \delta V}{\rho_2 V}$$
$$= \frac{\delta \rho_1}{\rho_1} - \frac{\delta \rho_2}{\rho_2}$$

For $N_2 \ll N_1$ (such as K/π ratio)

$$\frac{\langle (\delta R)^2 \rangle}{\langle R \rangle^2} \cong \frac{\omega_2}{\langle N_2 \rangle}$$

- ⇒ "simple" statistics dominated by the fluctuations of the smaller number
- \Rightarrow NA49 results for K/ π ratio!

Look at $N_1 \approx N_2$ in order to find correlations

Fluctuations of π^+/π^-

(with S. Jeon, PRL83 (1999) 5435)

Consider fluctuations of $R = \frac{\pi^+}{\pi^-}$

$$R=rac{\pi^+}{\pi^-}$$

$$\frac{\langle (\delta R)^2 \rangle}{\langle R^2 \rangle} = \left(\frac{\langle (\delta \pi^+)^2 \rangle}{\langle \pi^+ \rangle^2} + \frac{\langle (\delta \pi^-)^2 \rangle}{\langle \pi^- \rangle^2} - 2 \frac{\langle \pi^+ \pi^- \rangle - \langle \pi^+ \rangle \langle \pi^- \rangle}{\langle \pi^+ \rangle \langle \pi^- \rangle} \right)$$

- No contribution from volume fluctuations
- $\rho^0 \to \pi^+ \pi^-$, $\omega \to \pi^+ \pi^- \pi^0$ reduce fluctuations

Sensitive to number of rho and omega at hadronization!!!!

Predict: For thermal weights fluctuations should be only 70 % of statistical.

Find: Deviations from statistical fluctuation are very sensitive to rho and omega at *hadronization* ⇔ Dilepton Production

Fluctuations of H⁺ / H⁻

(with S. Jeon, PRL85 (00) 2076)

Consider:
$$R = \frac{N^{+}}{N^{-}} = \frac{1+F}{1-F}$$

$$F = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} = \frac{Q}{N_{ch}}$$

$$Q = N_+ - N_-$$

Net charge

$$N_{ch} = N_+ + N_-$$

$$<(\delta R)^2> = 4<(\delta F)^2> = 4 <(\delta Q)^2> = 4 <$$

Propose Observable:

$$\langle N_{ch} \rangle \langle (\delta R)^2 \rangle \cong 4 \frac{\langle (\delta Q)^2 \rangle}{\langle N_{ch} \rangle} \propto \frac{\chi}{\sigma}$$

$$\chi = -\frac{\partial^2 \phi}{\partial \mu_Q^2}$$
 Charge-Susceptibility

Entropy-density

Fluctuations in H⁺ / H⁻

Quark Gluon Plasma:

$$\frac{\langle (\delta Q)^2 \rangle}{\langle N_{ch} \rangle} \propto \frac{\langle (\delta Q)^2 \rangle}{S} \frac{S}{\langle N_{ch} \rangle} = \frac{Q_u^2 N_u + Q_d^2 N_d}{4(N_u + N_d + N_g)} \frac{S}{\langle N_{ch} \rangle}$$

$$N_{ch} < \left(\delta R\right)^2 > \approx 1 - 1.4$$

Pion Gas:

$$\frac{\langle (\delta Q)^2 \rangle}{\langle N_{ch} \rangle} = \frac{1^2 \langle N_{\pi^-} \rangle + 1^2 \langle N_{\pi^+} \rangle}{(\langle N_{\pi^+} \rangle + \langle N_{\pi^-} \rangle)}$$

$$\langle N_{ch} \rangle \langle (\delta R)^2 \rangle = 4$$

Hadron gas, incl. resonances (\sim 30% reduction of <(δ R)²>)

$$\langle N_{ch} \rangle \langle (\delta R)^2 \rangle \cong 3$$

Observable changes by Factor ~ 2-3 if phase transition

Reminder of:
$$R_{e^+e^-} \equiv \frac{e^+e^- \rightarrow \text{Hadrons}}{e^+e^- \rightarrow \mu^+\mu^-} = N_c \sum_{q} Q_q^2$$

Lattice Results

(Gottlieb et al, PRD55(97) 6852)

Findings: $\langle \delta N_u \delta N_d \rangle \approx 0$; $\langle \delta N_f^2 \rangle \approx \langle N_f \rangle$ $\langle S_{gluon} \rangle \approx 3.6 \langle N_{gluon} \rangle$ $\langle S_{quarks} \rangle \approx (1/2) \times 4.2 \langle N_{quarks} \rangle$

Simple estimate for $(<\delta Q^2>/S)$ agrees well with present Lattice results

Fluctuations of conserved quantities

Asakawa, Heinz, Mueller, PRL85 (00) 2072 S. Jeon and V.K. PRL85 (00) 2076

General idea: Given strong longitudinal expansion the fluctuations of conserved quantities will be preserved during hadronization and hadronic phase

Requirements: Equilibration and buildup of longitudinal flow in partonic phase

This is NOT an adiabatic transition through T_c

Examples:

- charge (this talk)
- baryon number (neutrons??)
- strangeness

Caution: These are extensive quantities

 \Rightarrow need to construct intensive quantity such as N⁺/N⁻ - ratio

Rescattering

(hadronization)

If: $\Delta y_{accept} >> \Delta y_{collision} \Rightarrow negligible$

General trend: The larger Δ y the deeper one looks into the event

Acceptance

For
$$\Delta y_{accept} << \Delta y_{total}$$

For $\Delta y_{accept} << \Delta y_{total} \implies$ grand canonical ensemble for $<\delta Q^2>$

Correction for charge conservation:

$$F_Q = (1 - \frac{\langle N_{ch} \rangle_{\Delta y}}{\langle N_{ch} \rangle_{total}})$$

In Bjorken picture:

$$\Rightarrow \frac{\langle (\delta Q)^2 \rangle}{S} \leq \frac{\langle (\delta Q)^2 \rangle}{S}$$
 initial

Transport results

(URQMD)

(M. Bleicher, S. Jeon and V.K. PRC62 (00) 061902)

- Acceptance corrections essential
- works for wide range of b and y
- URQMD consistent with prediction for Hadron Gas
- $\Delta y > 1$ to capture resonances

Transport results Comparison

(C.Gale, V. Topor Pop and Q.H. Zhang)

Caveats

- Hadronization (Parton cascade....)
- Resonances? (NO!)
- Finite acceptance corrections (solved)
- Rescattering in hadronic phase (not an issue, choose Δy sufficiently large ⇒LHC)
- Mixture of QGP and HG (always a problem)
- proton-proton (same as HG, lots of data in the '70)
-

Rescattering

(some numbers)

More detailed discussion based on diffusion eq: (Shuryak and Stephanov, hep-ph/0010100)

$$<(\delta Q)^2> = <(\delta Q)^2>_{equil.}F(x) + <(\delta Q)^2>_0 (1-F(x))$$

$$x = \frac{\Delta y_{diff}}{(\Delta y_{accept}/2)} \qquad (\Delta y_{diff})^2 = \int_0^{\tau} (y_{coll})^2 \frac{d\tau}{\tau_{free}}$$

Hadronic transport ($\Delta y=4$):

$$y_{coll} \approx 0.8$$
, $\Delta y_{diff} \approx 0.6$

$$\Rightarrow x \approx 0.6$$
$$\Rightarrow F(x) = 0.34$$

$$\frac{\langle (\delta Q)^2 \rangle}{\langle (\delta Q)^2 \rangle_{equil.}} = 0.65$$

30% correction

Experimental issues

Detectors do fluctuate as well!

$$<\delta Q^2>_{measured} = <\delta Q^2>_{real} + \Delta^2(detector)$$

example: N = 1000

$$\Rightarrow <\delta N^2 > /N \approx 3\%$$

efficiency fluctuations

Speculate

Problem: Ensemble of HG-boxes should carry the same fluctuations per (entropy/energy) as QGP. THIS is not a HG in chemical equilibrium

One way out (which at least does not violate obvious symmetries):

Enhance I=0 mesons, such as omega, eta ...

Simple estimate: ω up by factor $\sim 5 \Rightarrow PHENIX$

Conclusions

- E-by-E measures particle correlations!
- Look at intensive variables to avoid Volume fluctuations
- Ratio fluctuations! (NOT Ratios of Fluctuations)
- π^+/π^- : chemical equilibrium
- \bullet N⁺/N⁻ : QGP-test
 - $\langle N_{ch} \rangle \langle (\delta R)^2 \rangle \approx 3$ for hadron gas $\langle N_{ch} \rangle \langle (\delta R)^2 \rangle \approx 1$ for QGP
- Other applications: such as
 - K+/K- etc....
 - tri-critical point (lots of σ -mesons)
 - multifragmentaion
- Waiting for the Data....

Absence of evidence is not evidence of absence

Conclusions (contd.)

